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Abstract. We describe a linear-time algorithm for solving the molecular distance geometry problem
with exact distances between all pairs of atoms. This problem needs to be solved in every iteration of
general distance geometry algorithms for protein modeling such as the EMBED algorithm by Crip-
pen and Havel (Distance Geometry and Molecular Conformation, Wiley, 1988). However, previous
approaches to the problem rely on decomposing an distance matrix or minimizing an error function
and require O(n2) to O(n3) floating point operations. The linear-time algorithm will provide a much
more efficient approach to the problem, especially in large-scale applications. It exploits the problem
structure and hence is able to identify infeasible data more easily as well.
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1. Introduction

Many of the research subjects in biology focus on properties and activities of cells
that are primarily determined by proteins. Proteins are biopolymers made up of 20
different amino acids, each having an acid group, an amino group, and a side chain.
The order of the amino acids and the properties of their side chains in a protein
determine a three-dimensional structure. The structure specifies the function of the
protein (Branden and Tooze, 1991).

The structure of a protein may be determined experimentally via NMR spectro-
scopy or X-ray crystallography or theoretically through potential energy minim-
ization or molecular dynamics simulation (Creighton, 1993). We study a problem
related to the NMR approach to structure determination. More specifically, we con-
sider the problem of determining the structure of a protein with a set of distances
between pairs of atoms in the protein. The distances are either obtained with our
knowledge on certain bond lengths and bond angles or estimated through NMR
experiments. The problem is in general called the molecular distance geometry
problem.
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Modeling protein structure with distance geometry was pioneered by Crippen
and Havel, who developed the EMBED algorithm for structure determination with
NMR distance data (Crippen and Havel, 1988). Several biochemistry groups de-
veloped similar methods for NMR structure modeling, such as Kuntz et al. (1993),
and Brünger and Niles (1993). Work has also been done in developing more effi-
cient and reliable algorithms including the graph reduction algorithm by Hendrick-
son (1991), the alternating-projection algorithm by Glunt et al. (1993), and the
global smoothing and continuation algorithm by Moré and Wu (1996, 1997, 1999).

In this paper, we study a special class of distance geometry problems when
exact distances between all pairs of atoms are given. In practice, we may have only
a sparse set of distances and know only their lower and upper bounds. However, the
missing data can often be estimated or approximated, and a set of exact distances
can be generated in between the bounds. A valid structure can then be determined
by repeatedly solving a distance geometry problem with exact distances between
all pairs of atoms (Crippen and Havel, 1988; Glunt et al., 1993; Havel, 1995). This
problem can be solved in O(n2) to O(n3) floating point operations by decomposing
an n by n distance matrix, where n is the number of atoms. However, it is too costly
for large-scale applications, especially when the problem needs to be solved many
times. We describe a new algorithm for solving the problem in only O(n) time.
The algorithm is based on a simple geometric relationship between the coordinates
of the atoms and the distances among them. For each of the atoms, the algorithm
determines the coordinates for it by solving a small and simple system of algebraic
equations. The amount of computation is proportional to the number of the atoms
in the molecule, and in other words, is in the order of n floating point operations.

The paper is organized as follows. We first describe the distance geometry
problem with exact distances in greater detail in Section 2. We also review the
matrix decomposition algorithm for the problem. We then present our algorithm in
Section 3 and verify the computation time. The implementation of the algorithm
is described in Section 4. We also discuss some of our computational results with
proteins. In Section 5, we conclude the paper and discuss possible extensions of
the algorithm to problems with bounds on the distances and beyond.

2. The problem with exact distances

A special class of distance geometry problems is when exact distances between
all pairs of atoms are given. Then, the problem can be solved by decomposing a
distance matrix formed with the given distances. More specifically, we can define a
special matrix with the given distances. If the distances are consistent in the sense
that we can indeed find a set of feasible points for the atoms in three-dimensional
space, the distance matrix must be of rank � 3. If we can find the nonzero sin-
gular values of the matrix, we can use the corresponding singular vectors to find
the coordinates of the atoms immediately (Blumenthal, 1953; Crippen and Havel,
1988).
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If the number of arithmetic operations required for solving a problem is bounded
by a polynomial function of the problem size, we say that the problem can be
solved in polynomial time and it is a tractable problem. Note that computing the
singular values of an n × n matrix can be done in at most O(n3) floating point
operations (Golub and Val Loan, 1989). So, the distance geometry problem, when
all exact distances are given, can be solved in polynomial time and is a tractable
problem. We now describe the matrix decomposition algorithm for this special
class of distance geometry problems in greater detail in the following.

If all exact distances are given, they can be arranged into a matrix, d = [di,j ],
with di,j corresponds to the distance between atoms i and j . Suppose that we have
a set of coordinates x0, x1, . . . , xn, where xi = (ui, vi, wi)

T . We can make this
assumption since no matter what the coordinates are, we can always translate them
without changing any distances among the atoms.

We consider the problem to find x1, . . . , xn so that the distances between points
i and j are equal to given distances di,j for all i and j . The distance constrains can
be written in the following mathematical form,

‖xi − xj‖ = di,j , i, j = 0, 1, . . . , n,

or equivalently,

‖xi‖2 = d2
i,0,

‖xi − xj‖2 = d2
i,j , i, j = 1, . . . , n.

The second set of constrains are equivalent to

‖xi‖2 − 2xT
i xj + ‖xj‖2 = d2

i,j , i, j = 1, . . . , n.

We then obtain

d2
i,0 − d2

i,j + d2
j,0 = 2xT

i xj , i, j = 1, . . . , n.

Let Di,j = (d2
i,0 − d2

i,j + d2
j,0)/2. We can then define a matrix D = [Di,j ]. Let X

be an n × 3 matrix and X = [xT
1 ; . . . ; xT

n ]. We then have

D = XXT .

If a solution exists for this equation, matrix D must be of rank � 3. Therefore, we
can make a singular value decomposition for D to obtain

D = U�UT ,

where U is an n × 3 orthogonal matrix and � a 3 × 3 diagonal matrix with
the diagonal elements σ1, σ2, and σ3 being three largest singular values of D. A
solution for D = XXT can then be obtained with

X = U�1/2.
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Figure 1. A 2D example: The fourth atom on the top can be determined with its distances to
the other three atoms.

Figure 2. A 3D example: The fifth atom on the top can be determined with its distances to the
other four atoms.

Note that the singular value decomposition can be done in at most O(n3) float-
ing point operations. Therefore, the solution to the distance geometry problem can
be obtained in polynomial time if given all exact distances between pairs of atoms.

3. A linear-time algorithm

Our algorithm is based on a simple geometric relationship between distances and
coordinates. In two-dimensional space, if we know the distances among three atoms,
we can find the coordinates for the atoms by solving a simple algebraic equation.
If the three atoms are not in the same line, the coordinates for any of the remaining
atoms can then be determined uniquely with its distances to the three fixed atoms
(see Figure 1).
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Figure 3. The original (a) and computed (b) structures for the HIV-1 RT p66 protein
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Similarly, in three dimensional space, if we know the distances among four
atoms, we can find the coordinates for the atoms immediately. If the four atoms are
not in the same plane, the coordinates for any of the remaining atoms can then be
determined uniquely with its distances to the fixed four atoms.

Mathematically, let us assume that we have found the coordinates for the first
four atoms. Let the coordinates be denoted by

x1 = (u1, v1, w1)
T

x2 = (u2, v2, w2)
T

x3 = (u3, v3, w3)
T

x4 = (U4, v4, w4)
T .

Suppose that we want to determine the coordinates xi = (ui, vi, wi)
T for certain

atom i. Since we know the distances between all pairs of atoms, we certainly know
the distances between atoms i and j for j = 1, 2, 3, 4. Let the distances be denoted
by di,j . We then have the following equations.

‖xi − x1‖ = di,1

‖xi − x2‖ = di,2

‖xi − x3‖ = di,3

‖xi − x4‖ = di,4

which is equivalent to

‖xi − x1‖2 = ‖xi‖2 − 2xT
i x1 + ‖x1‖2 = d2

i,1

‖xi − x2‖2 = ‖xi‖2 − 2xT
i x2 + ‖x2‖2 = d2

i,2

‖xi − x3‖2 = ‖xi‖2 − 2xT
i x3 + ‖x3‖2 = d2

i,3

‖xi − x4‖2 = ‖xi‖2 − 2xT
i x4 + ‖x4‖2 = d2

i,4

and

‖xi‖2 − 2uiu1 − 2viv1 − 2wiw1 + ‖x1‖2 = d2
i,1

‖xi‖2 − 2uiu2 − 2viv2 − 2wiw2 + ‖x2‖2 = d2
i,2

‖xi‖2 − 2uiu3 − 2viv3 − 2wiw3 + ‖x3‖2 = d2
i,3

‖xi‖2 − 2uiu4 − 2viv4 − 2wiw4 + ‖x4‖2 = d2
i,1



A LINEAR-TIME ALGORITHM FOR SOLVING THE MOLECULAR ........ 371

Subtracting the first equation from the rest ones, we obtain

2ui(u1 − u2) + 2vi(v1 − v2) + 2wi(w1 − w2) = (‖x1‖2 − ‖x2‖2) − (d2
i,1 − d2

i,2)

2ui(u1 − u3) + 2vi(v1 − v3) + 2wi(w1 − w3) = (‖x1‖2 − ‖x3‖2) − (d2
i,1 − d2

i,3)

2ui(u1 − u4) + 2vi(v1 − v4) + 2wi(w1 − w4) = (‖x1‖2 − ‖x4‖2) − (d2
i,1 − d2

i,4).

In matrix form, the equations are reduced to

Axi = bi,

where

A = 2




u1 − u2 v1 − v2 w1 − w2

u1 − u3 v1 − v3 w1 − w3

u1 − u4 v1 − v4 w1 − w4


 ,

and

bi =



(‖x1‖2 − ‖x2‖2) − (d2
i,1 − d2

i,2)

(‖x1‖2 − ‖x3‖2) − (d2
i,1 − d2

i,3)

(‖x1‖2 − ‖x4‖2) − (d2
i,1 − d2

i,4)


 .

This system of equations can be solved easily in a fixed number of floating point
operations. Therefore, if we have n atoms in a molecule, we only need to solve
the equations for at most n times. The total number of floating point operations is
O(n). We then obtain a linear time algorithm for determining the structure of the
molecule given exact distances between all pairs of atoms.

4. Computational results

We have implemented our algorithm and tested it with a set of protein structures.
We describe our implementation procedure, the particular protein we studied, and
some of our preliminary results.

We implemented the algorithm in C++. The code includes two major objects,
molecule and atom, implemented as C++ classes. The molecule class is built with
the atom class. It consists of an array of atoms. Each atom has a set of data in-
cluding its coordinates and the distances to other atoms in the molecule. Several
member functions are implemented for molecule. They include input, output, and
graphics display functions, and a function for structure determination. The input
function takes distance data from an input file and determines the molecule and its
atoms. The structure determination function computes the coordinates of the atoms
based on the input distances. The results are saved in a file in certain format and
can be displayed by the graphics function, which is implemented by integrating
RasMol (Sayle and Milner-White, 1995) into our program.
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The structure determination function determines the coordinates for the atoms
using the linear time distance geometry algorithm. More specifically, it takes the
first atom and puts it at the origin. Let u1, v1, and w1 be the three coordinates for
the atom. Then u1 = 0, v1 = 0, and w1 = 0. It then fixes the second atom on one
of the axes, say the first axis, by setting u2 = d1,2, v2 = 0, and w2 = 0, where d1,2

is the distance between atoms 1 and 2. The third atom then is selected among the
remaining atoms if it cannot be on the same line determined by the first two atoms
according to its distances to the two atoms. The atom is put into one of the planes
formed by the axes, say the one by the first and second axes. Therefore, the third
coordinate for the atom w3 is set to zero. The other two coordinates are determined
by using the distances of the atom to the first two:

u2
3 + v2

3 = d2
3,1

(u3 − u2)
2 + v2

3 = d2
3,2,

and therefore,

u3 = (d2
3,1 − d2

3,2)/(2u2) + u2/2

v3 = ±(d2
3,1 − u2

3)
1/2.

Here, v3 can either be positive or negative without affecting the final structure. We
therefore choose v3 to be positive. Finally, the fourth atom is selected if it cannot
be put in the same plane formed by the first three atoms according to its distances
to the three atoms. The atom can then be fixed by solving the following equations.

u2
4 + v2

4 + w2
4 = d2

4,1

(u4 − u2)
2 + v2

4 + w2
4 = d2

4,2

(u4 − u3)
2 + (v4 − v3)

2 + w2
4 = d2

4,3,

and

u4 = (d2
4,1 − d2

4,2)/(2u2) + u2/2

u4 = (d2
4,2 − d2

4,3 − (u4 − u2)
2 + (u4 − u3)

2)/(2v3) + v3/2

w4 = ±(d2
4,1 − u2

4 − v2
4)

1/2.

Once all first four atoms are allocated, the remaining atoms can be determined by
using exactly the algorithm described in the previous section. Here again, w4 can
either be positive or negative, corresponding to two mirror symmetric structures.
We compute one of the structures with w4 positive. The second one can be obtained
by simply making all wi , i � 4, to have an opposite sign.

We tested our program with a set of proteins. In particular, we worked on a
HIV-1 RT protein. We describe this protein briefly in the following. Human im-
munodeficiency virus type 1 (HIV-1) is known to be the etiological agent of the
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acquired immunodeficiency syndrome (AIDS). Extensive studies have been car-
ried out toward understanding how the virus replicates and integrates into the host
genome. The reverse transcriptase (RT) of HIV-1 is responsible for converting the
viral genome RNA into DNA, which is the key step for viral replication. Similar to
other retrovirus RT, HIV-1 RT contains three distinct enzymatic activities: (i) RNA
dependent DNA polymerase activity which uses single-strand RNA as template to
synthesize minus-strand DNA; (ii) RNase H activity which digests the RNA strands
in the synthesized DNA-RNA duplex and free the minus-strand DNA; (iii) DNA
dependent DNA polymerase activity which then uses the minus strand DNA as
template to synthesize plus-strand DNA (Jacob-Molina and Arnold, 1991; Jaeger
et al. 1998; Telesnitsky and Goff, 1997). The crystal structures of HIV-1 RT have
been determined by several different groups (Telesnitsky and Goff, 1997). HIV-1
RT forms an asymmetric heterodimer of 66- and 51-kDa subunits. The 66-kDa sub-
unit, p66, consists of both the DNA polymerase activities and the RNase H activity
while the 51-kDa subunit, p51, also contains some DNA polymerase activities but
lacks the RNase H activity. Furthermore, genetic studies demonstrated that only
p66 contributes directly to the polymerase activity of the HIV-1 (Le Grice et al.,
1991). In order to test our program, we have retrieved the X-ray structural data
of the p66 (IHMV. pdb) from the Protein Data Bank (PDB). The structural data
deposited in the PDB are the coordinates of each atom in the molecule. We first
converted the coordinates to distances for every pair of atoms and then used the
converted distance data as the input to our program.

There are 4200 atoms in the p66 subunit of HIV-1RT. We ran our code with the
input distance data and were able to determine the structure of the protein in only
188 859 floating point operations. Figure 3 shows the original (a) and computed
(b) structures of the protein. The two structures match perfectly, and their distance
matrix error (DME) is equal to zero.

We have also implemented an SVD algorithm as described in Section 2 in Mat-
lab (Math Works, 1998). We ran the Matlab program on the same p66 subunit of
HIV-1 RT. The program required 1 268 200 000 floating point operations to obtain
a structure. Our algorithm was about 6715 times faster than the SVD algorithm.

5. Concluding remarks

In this paper, we have studied a special class of distance geometry problems when
exact distances between all pairs of atoms are given. In practice, we may have only
a sparse set of distances and know only their lower and upper bounds. However, the
missing data can often be estimated or approximated, and a set of exact distances
can be generated by using the bounds. A valid structure can then be determined
by repeatedly solving a distance geometry problem with exact distances between
all pairs of atoms (Crippen and Havel, 1988; Glunt et al., 1993; Havel, 1995). This
problem can be solved in O(n2) to O(n3) floating point operations by decomposing
an n by n distance matrix, where n is the number of atoms. However, it is too
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costly for large-scale applications, especially when the problem needs to be solved
many times. We describe a new algorithm for solving the problem in only O(n)

floating point operations. The algorithm is based on a simple geometric relationship
between the coordinates of the atoms and the distances among them. For each of
the atoms, the algorithm determines the coordinates for it by solving a small and
simple system of algebraic equations. The amount of computation is proportional
to the number of the atoms in the molecule, and in other words, is in the order of n

floating point operations.
We have implemented our algorithm in C++ and tested it with a set of protein

structures, and in particular, a HIV-1 RT protein. The results showed that our al-
gorithm determined the structure efficiently and out-performed the SVD algorithm
by several orders of magnitude.

The linear-time algorithm is not only a great improvement over the SVD al-
gorithm for the exact distance geometry problem, but also detects errors in the data
more easily when a feasible structure cannot be found: the inconsistent distances
can be identified when the system of equations for a particular atom does not have
a solution. This property can be as important as determining the structure of the
molecule itself in practice.

However, since only a subset of the distances are used by the algorithm, even if a
structure is determined, other distances may still be inconsistent. In our implement-
ation of the algorithm, we have a follow-up procedure to detect such possible in-
consistency in the distance data: We computed all the distances from the computed
structure and compare them with the given distances. The inconsistent distances
are reported when any discrepancies are detected. This computation, when needed,
requires O(n2) floating point calculations.

Finally, the linear-time algorithm can also be extended directly to general classes
of distance geometry problems when lower and upper bounds on the distances are
given. In those cases, the coordinates for each of the atoms can be determined as a
set of intervals that specify a region for the location of the atom. Mathematically,
this can be achieved by solving a system of interval equations. Work along this
direction is being underway and will be reported elsewhere.
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